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ON THE CONVEX APPROXIMATION PROPERTY 
AND THE ASYMPTOTIC BEHAVIOR 

OF NONLINEAR CONTRACTIONS 
IN BANACH SPACES 

BY 

R O N A L D  E, B R U C K  t 

ABSTRACT 

We prove that if C is a bounded closed convex subset of a uniformly convex 
Banach space, T : C - - * C  is a nonlinear contraction, and S. = 
(I  + T + . . .  + T" ~)/n, then lira. J lS . (x ) -  T S . ( x ) I  I = 0 uniformly in x in C. T 
also satisfies an inequality analogous to Zarantonel lo 's  Hilbert space inequality, 
which permits the study of the structure of the weak to-limit set of an orbit. 
These  results are valid for B-convex spaces if some additional condition is 
imposed on the mapping. 

Introduction 

Throughout this paper E denotes a real or complex Banach space and C is a 

nonempty bounded closed convex subset of E. A (nonlinear) contraction on C is 

a mapping T:  C ~ E for which II T x  - T y  II----Itx - y II for all x, y in C. We denote 
the set of all contractions T:C-.-* C, i.e. contractive self-mappings of C, by 

Cont (C), and the set of fixed-points of T by F(T) .  The weak to-limit set tow(x) 

of x in C is the set of weak subsequential limits of {T"(x)}; since we do not 

assume C is weakly compact, F ( T )  and tow(x) may very well be empty. 

In this paper we introduce the convex approximation property on E, prove 

that it is equivalent to the B-convexity of E, and use it to study the asymptotic 

behavior of T (especially of the C~saro means S, = (I + T + . . .  + T"-l)/n ) and 

the structure of tow(x). The results may be regarded as the extension to Banach 

spaces of results of [5], and are related to [6]. 

We do not directly consider the mean ergodic theorem because our results are 

obtained under more stringent assumptions (in one sense) than needed for the 
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MET. This narrowing (to B-convex spaces) is justified by three facts: first, since 

we do not assume C is weakly compact, our results may apply to mappings which 

do not have a fixed point. Second, we show that 

l im[ lS , (x) -  TSn(x)l  I = O, 

even if T does not have a fixed-point; heretofore, this has been known only in 

Hilbert space. Third, we give an analogue of Zarantonello's inequality [12, p. 

248] 

I[T(~ t,x,)- ~ t, Tx, l[2<= t,,,t,,x, -x,,,2-,,7"x, - 

ZarantoneUo's inequality is valid in Hilbert space for any n and t ~ A"-', 

x , .  �9 x, E C;  it was rediscovered by Baillon [1] who used it as the basis of the 

first proof of the mean ergodic theorem in Hilbert space. 

While we state our results for discrete semigroups /, T, T : , . . . ,  they are 

equally valid for continuous contraction semigroups S( t ) .  The  analogues may be 

proved by step-by-step imitation, or in a more principled fashion by a discretiza- 

tion device of Reich [10]. 

In the first version of this paper we proved that superreflexive spaces have the 

convex approximation property. We have adopted J. Baillon's elegant proof 

(devised with the aid of W. B. Johnson and G. Pisier) that this property is 

actually equivalent to B-convexity. (W. Davis has independently, and simultane- 

ously, communicated to us another proof of this equivalence.) 

Notation. The convex hull of a set M is denoted by co M, the closed convex 

hull by clco M. We put 

A "-~= {h = (h,, . . -, A,): each A, > 0 a n d E h ,  = 1}. 

The open ball of  radius r centered at 0 is denoted by B,. Weak convergence is 

denoted by --~ 

1. The convex approximation property and means 

We say that E has the convex approximation property (C.A.P,) if for each 

e > 0  there exists a positive integer p such that for every M CBI, 

(1.1) c o M  C c % M  + B~, 

where copM denotes the set of sums A~Xl + �9 �9 + A~xp with A E A p-~, Xl, �9 �9 xp E 

M variable but p fixed; or in other words, such that each convex combination of 
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elements of M can be approximated by a convex combination of no more than p 

elements of M. 

The condition M C B~ is a scaling normalization and we shall frequently use 

(1.1) for sets M whose diameters are uniformly bounded. 

THEOREM 1.1. E has the C.A.P. iff E is B-convex.  

PaOOF. First, it is well known that E is B-convex iff l~ is not finitely 

representable in E. Another  characterization, due to Pisier [9] (see also [3, 

lemma 3]), is that E is B-convex iff there exist constants c > 0 and q > I such 

that for all independent random variables Xt, X 2 , " - ,  X, with values in E, 

E X, =<c" E(IIx, II.). 

Now suppose E is B-convex. If e > 0 we can choose p so that 

(1.2) 2cp t/q < e. 

Let x E co M; then we can find an M-valued random variable X which is 

centered at x. Let Xz, X2 , ' - . ,  Xp be independent M-valued random variables 

centered at x. Since I IX~( to)-x  lie 2 for any to, by virtue of (1.2) we have 

(1.3) (X~ - x < 2cp TM <- e. 
i = l  Lq(E) 

Hence there exists to such that 

. 4 ,  

This shows x E cop (M) + BE. 

Conversely, if l~ is finitely representable in E then for any n there exist unit 

vectors x ~ , x 2 , . . . , x ,  of E such that 

I a, I <= a,x, for all a , , . . . ,  a,  E R. 
i = l  i = l  

Thus if y * =  ( x ~ + x 2 . "  + x , ) / n  we have 

(1.5) dis(y *, cop ({x,})) >-_ ~(n - p)/n.  

No matter  what value of p we choose, we can therefore find a set M in the unit 

ball and a point y* in c o M  such that d i s (y* ,c%M)>�88  so that E cannot have 

the C.A.P. Q.E.D. 
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As in [6] we denote by F the set of continuous, strictly increasing, convex 

functions 3' : R ---> R with 3'(0) = 0. Recall that T :  C ~ E is said to be of type (3') 

if y E F and 

3' (11 cTx + (1 - c) Ty - Ttcx + (1 - c)y)ll) =< II x - y II - II Tx - Ty I[ 

for all x, y in C and c in [0, 1]. If E is uniformly convex then every contraction 

T: C--->E is of type (y);  moreover,  3' can be chosen to depend only on diam C 

and not on T. 

For e > 0 we let F, (T)  be the set of e-approximate fixed points of T, i.e., we 

put F, (T)  = {x ~ C :  I[x - Tx II--< ~}. We have: 

THEOREM 1.2. Suppose E is B-convex and 3' E F. Then for each e > 0 there 

exists 8 > O, depending only on e, % and diam C, such that for each contraction 

T : C ---~ E of type (3"), 

(1.6) clco Fe (T) C F, (T). 

There is an interesting historical note to Theorem 1.2. In [4] F. Browder 

proved that if E is a uniformly convex Banach space and T :  C---~ E is a 

contraction then I - T is demiclosed, i.e. if lim, (x, - Tx,)  = 0 and w - lim.x, = 

x then x E F(T) .  The crux of his proof was that for each e > 0 there exists 6 > 0 

with c o 2 G ( T ) C G ( T ) ;  by a clever passage to a subsequence of {x.} this is 

sufficient to prove demiclosedness. 

PROO~ OF THEOREM 1.2. It was shown in [6, lemma 1.2] that the inverse 

function ~ of t--~ y-~(2t)+ t satisfies 

Hence by induction 

(1.7) 

co2 Fr T)  C F, ( T). 

copE, po~(T) C F, (T). 

By Theorem 1.1 E has the C.A.P., and since C is bounded, given e > 0 we can 

choose p so 

c o M  CcopM + B./3 

for all M C C. From (1.7) we get 

(1.8) co F, (T)  C F,/3(T) + B,,3 

with 6 = o " ~ ( e / 3 ) .  But 

(1.9) F,/3(T) + B,,3 C FE (T)  
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because 
Ilx - Txll<=lJx - y I1+ Ily - Ty  [I + l[ Ty  - Txl l  

_-<2[Ix - y I1+ Ily - Tyl[ ;  

finally, putting (1.8) and (1.9) together and noting that E ( T )  is closed we get 

(1.6). Q.E.D. 

Since C is bounded it is a standard result that F ~ ( T ) ~ O  for every T E  

Cont (C). If in addition C is weakly compact and T is of type (3') then in fact 

F ( T ) ~ O  (see the remark on p. 110 of [6]), but it is not clear T must have a 

fixed-point if C is not weakly compact. 

THEOREM 1.3. Suppose E is B-convex and 3" E F. Then for each 77 > 0 there 

exist 8 > 0 and N > O, depending only on n, 3", and diam C, such that for every 
contraction T : C - - * E  of type (3') and each sequence {x,} in C satisfying 

llxo+,- Tx,, II <= 8 for all n, there holds 

1 " 
(1.10) n ~= x, E for alln >= N. 

For an application where it is important that {x,} is not an actual orbit, see [7]. 

PROOF. The proof is essentially the same as theorem 1.1 of [6]. Since the 

details are rather complicated we sketch only the differences. 

First, choose e > 0 using Theorem 1.2 so 

thus 

clo F~ (T) C F,/.~(T); 

clco F, (T) + B~, C F,  (T). 

Next, choose p in Z so diam C <=pe2/2. Next, put q,(t) = y- ' (diam C/n + t)+ t, 

q(t) = y- '( t)+ t and choose 0 < B < 7//3 so small that 

qP-'(8) < e2/2. 

Finally, choose N so large that 

qP,-'(8) < e 2/2 for  all n _-> N. 

As promised, N and 8 depend only on y, ~/, and diam C. 
p-, 

Put w~ = 1/p Y~mo xj,. Paralleling the proof of lemma 1.5 of [6] we find 

n - I  

n ~ o  II w '+ ' -  Tw,[[<q:-'(8) 
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provided [Ix,+,-Tx, l ie  ~ for all i. Following the rest of the proof in [6] with 

clco F, (T) playing the role of W' there, we end with (1.10). Q.E.D. 

One interpretation of Theorem 1.3 is that C~saro averaging is stable with 
respect to rounding (or other) error in the evaluation of T. Probably the most 

important consequence, however, is the following, previously known only in 
Hilbert space (cf. Reich [11]): 

COROLLARY 1.1. Suppose E is B-convex and 3' ~ F. Then 

limll S . ( y ) -  TS.(y)ll = 0 

uni[ormly in y in C and in T in Cont(C) of type (T), where S, = 
(I + T + " .  + T"-l)/n. 

The proof is such a trivial application of Theorem 1.3 that we omit it. Equally 
trivial is: 

COROLLARY 1.2. If  E is B-convex, T:C--->E is of type (3"), and {x,}CC 

satisfies lim,, llx~ - T x o  11 = 0, then 

I " II lim T ( I ~ ,  x,§ - n  x,+k =0  
\ n i = l  .= 

uniformly in k > O. 

It is even possible to reach the conclusion of Corollary 1.2 from the 
assumption that Ilxn+,- Zx, II is only (C, 1) convergent to 0. 

COROLLARY 1.3. Suppose E is B-convex and T, To ~ Cont (C) are both of type 

(7) and commute. Then for each e >0,  F , ( T ) A  F~(To)~ O. 

PROOF. Given ~ > 0 choose 8 > 0 so clco F~ (To) C F, (To). Since T commutes 

with To, Fs(To) is seen to be T-invariant, and we have already remarked it is 
nonempty. Thus for any x in Fs(To), 

S , (x)  = (x + Tx + " "  + Tn-~x)/n E clcoF~(To)CF~(To). 

But by Corollary 1.1 we have S, (x) E F~ (T) for sufficiently large n. Q.E.D. 

It would be interesting to know whether Corollary 1.3 is true without the 
hypotheses that E is B-convex and the mappings are type (3'). 

2. The ,weak to-limit set 

We return to condition (3'). 
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LEMMA 2.1. Suppose y E F. Then for each positive integer p there exists yp E F 

such that [or any T : C ~ E o[ type (y) and any A E A ~-~ and x ,  . . .,xp in C, 

(2.1) yp(IIT(Y.A,x,)-EA, Tx,[[)<= max ( [ I x , - x j l l - l l T x , -  Tx, II). 
I~i,j'gp 

PROOF. By induction on p. We begin by setting y2 = y. Once yp has been 

defined we define yp+, to be any function in F satisfying 

y;~+,(t) -> V~-'(t) + y ; ' ( t  + 2~'(t)); 

for example, if * denotes the inf-convolution. ! the identity function on R, and 

the functions in F are extended to be + ~ on ( - ~ , 0 ) ,  then we may take 

y.+, = �89 y~) o (~(~ , .~ . ) ) .  

We must verify (2.1) for p + 1. Let T:  C --9 E be of type (y) and fix A ~ AP and 

x l , "  ", x~+l E C The case ;t~+~ = 1 is trivial (and omitted). For the rest of the 

proof we let subscript i range through 1-< i < p  + 1, w h i l e  j ranges through 

1 =< i =<p. We put 

u~ = (1 - ,~p+l)x, + ~ , . l x ~ + , ,  

x'~= Tx,, 

u~ = (1 - x .+ , )x ;  + ,~.§ ~+,, 

m = As/(1 -/~p+l), 

so/z ~ A p-'. We lay out the computations (most of which are trivial) as follows: 

X A,x~ = X ~jus, X A,x'~ = E #su ~; 

II T ( E  A,x, ) - E A,x',ll = U T(Y~ p.,u;) - E p.,u ;[[ 

(2.2) 
=< II T(Z ~,,u,)- Z ~,Tu, I1 + Z ~, 11Tu, - u;ll; 

(2.3) ~,,(IIT(Z~,,u,)-Zu,,Tu, II) < max (IIu,-uEII--IITu,-- TUEII); 
i-~j.k.,~p 

(2.4) I1 u, - uk II - II Z u ,  - Zu~  II =< 11 u, - uk II - II u ; -  u ~ll + II u '~ - Zu~  II + II u ;  - Tu, II; 

(2.5) y2(ll Z u ,  - u;l[)  = IIx, - x,+, I [ - ] I x ; -  x;+,ll ;  

II u, - u~ l [ -  II u ; -  u ~11 = (1 - x.+,)([I x, - x~ II- I I x ; -  x~ll)  

(2.6) <-Ilx, - x~ I I - l l x ; -  x~[[. 
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Of these, (2.3) represents the induction hypothesis and (2.5) the case p = 2. 

' �9 + 1}. Then by (2.5) Put t = m a x { l l x , - x ~ l l - I I x ; - x k l l . l < - i , k  <=p 

II Z u ,  - u;ll--< y2-1(t), 

which combined with (2.6) and used in (2.4) yields 

(2.7) Ilu, - uk II-IITu, - Tuk II---- < t + 2v~( t ) .  

When used in (2.3) this yields 

Finally, when (2.7) and (2.8) are used with (2.2) we get 

II TtY~ A,x,)- ~ X,Tx, II--< V~l(t § 2y~,'(t + 2v~-'(t))). 

By the definition of yp+~, therefore 

rp+,(llZ(Y~X,x,)-Y~X,Tx, ll)<-t = max ( [ I x , - x j l l - l l Z x , -  Zxjll). 
l ~ i , k ' ~ p +  1 

Q,E.D. 

It would seem from the lemma that as p increases, yp decreases (quite rapidly, 

in fact) and the estimates are useless for convex combinations of infinite point 

sets. This is not the case in B-convex spaces, however. 

THEOREM 2.1. Suppose E is B-convex and y2 ~ F. Then there exists 3' ~ F, 

depending only on T2 and diam C, such that 

(2.9) r( l lT(~A,x , ) -~A,Tx,  ll)<- m.axn(llx,-x, l l - I ITx , -  Txjll) 

for any contraction T : C ~ E of type (T2), and A E A "-~, any x~,. .  ., x, E C, and, 

most importantly, for any n. 

(2.9) is the analogue of Zarantonello's inequality we mentioned in the 

introduction. 

PROOF. First, determine y~ U F for p = 2 , 3 , . . .  from Lemma 2.1. The 

product of B-convex spaces being B-convex (Giesy [8]), E • E has the C.A.P.; 

hence, given e > 0 we can determine p so that 

t o M  CcopM + n~/3• n~/3 

for every M C C • C. Finally, put ~ = "yp (e/3). 

Suppose x , . . . ,  x, E C satisfy 



312 R.E.  BRUCK Israel J. Math. 

II x, - x, l[ - II Tx,  - Tx ,  II ~- a for  all  i, j. 

Consider M = {[x,, Txi] E C • C : i = 1, 2 , . . . ,  n}. Thus for each A E A "-~ there 

exist /z E A p-~ and i~,- ' . ,  ip E {1, 2 , . . . ,  n} such that 

II y- A,x, - ~ ~,x,, U < ~/3,  

I1~: A,Tx, - Y~ ~,Zx,, II < e/3. 

In other words, the C.A.P. on E x E guarantees simultaneous approximability 

in E. Now 

II Z(~ A,x,) - E A,Tx, l[ <= II T(E A,x,) - T(Y~/z,x,, )ll + II T(E/z,x,, ) - E iz, Tx,, II 

+ II y. ~,Tx, ,  - :~ A,Tx, II 

=< e / 3 +  e / 3 +  e / 3 =  e. 

Thus whenever llx, - x, II-II Zx,  - Tx ,  II--< a for  all i,j  we have 

(2. z0) II Z ( ~  A,x,) - Y~ A, Tx,  II --< e. 

The construction of 3' E F such that y ( e ) ~  8 for this e - 8  prescription is an 

elementary exercise. Q.E.D. 

We recall two definitions from [5]: T E Cont(C)  is said to be asymptotically 

isometric on a subset S of C provided for all x, y in S the lim, II T " x  - T"§ II 
exists uniformly in i; and T is said to be e-approximately atline on a convex 

subset K of C provided (2.10) holds for all n, all A E A "-~, and all x j , . . . ,  x, in K. 

THEOREM 2.2. Suppose E is B-convex and T E Cont (C) is of type (3'). I f  T is 

asymptotically isometric on a subset S of C, then T maps to, (x ) into itself[or each x 
in S and T maps clco U{tow(x):x E S} into itself affinely. I[, in addition, C is 

weakly compact, "into" can be replaced by "onto" in these statements. 

PROOF. As in [5], but using Theorem 2.1 instead of Zarantonello's inequality, 

we see that for each e > 0 and x~ , . . . , x ,  in S there exists N such that T is 

e-approximately attine on clco U{Tkx,  : 1 <= i <= m ; k >= N}. It also follows, but 

not quite by the proof in [5], that if as j ~ 0o we have n ( i ) ~  oo and T"")x ~ y, 

then T~-(')x ~ Ty. (Fix g in E* and use the approximate aflineness of T to show 

that all subsequential limits of {(T~+"(')x- Ty, q)} are 0.) This implies that T 

maps to,(x) into itself. 

Moreover, since we clearly have 

co 0 to.(x,)Cclco 0 {Tkx, :k >=N} 
i = l  i = l  



Vol. 34, 1981 CONVEX APPROXIMATION PROPERTY 313 

for any N, it follows that T is e-approximately attine on co L.JT=~ tow(x,) for any 

e > 0 - -  and hence aftine there for any choice of x , . . . ,  x, in S. Thus T is affine 

on 

K,,:= co U{o~w(x):x ~ S}, 

and since T maps tow(x) into itself, T(Ko)CKo. 
It only remains to show that if C is weakly compact then T maps tow(x) onto 

itself and clKo onto itself. But if z ~tow(x) we can choose n(i)--*~ so 

T"")x ~ z, and (by weak compactness) a subsequence (which we again denote by 

n(i)) such that {T"")-~x} converges weakly to some y in C. By our earlier 
remark, we have z = Ty, so that tow(x)C T(ww(X)) as claimed. It also follows 

that T(K,,) = K,,; by continuity T is also affine on cl Ko, and therefore continuous 

in the weak topology on cl Ko. Since cl Ko is weakly compact, so is T(cl Ko), but 

as K,, = T(Ko) is dense in cl K,, this implies T(cl K,,) = cl Ko. Q.E.D. 

In Hilbert space it is known that T is isometric on cl K, but we do not know 
whether under the present circumstances T is isometric on even tow (x). It is also 

known that an odd mapping is asymptotically isometric in Hilbert space, but this 

too is unknown in general spaces. 

Finally, to reconcile the abstract with the paper, we remark that every 

uniformly convex Banach space is B-convex, and every nonexpansive mapping 

in such a space is of type (y), so that all the results of this paper apply to 

uniformly convex spaces. 
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